Citric acid is a naturally occurring substance and a common metabolite found in plants and animals. A healthy adult human body produces and metabolizes approximately 1.5 kg of citric acid per day. Additionally, this organic acid is obtained from a wide variety of natural dietary sources.

Citric acid has several highly variable characteristics, and as a purely biological product, it can be safely used in the food and pharmaceutical industries. As a result, citric acid is employed in a growing number of products and is the most versatile and widely used organic acid in the food and beverage (70%) as well as the pharmaceutical (10%) sectors.

The production of citric acid (CA) fluctuates based on factors such as demand, pricing, and manufacturer capacity. In recent years, the CA market has faced significant pressure. The high costs of raw materials and energy have transformed what was once a profitable CA production sector into an unprofitable market. As a result, finding alternative.

Technical Characteristics

Chemical formula C₆H₈O₇
CAS Number 77-92-9
Other names 2-hydroxypropane-1,2,3-tricarboxylic acid, Anhydrous citric acid, Citrate, Citric Acid Monohydrate, Uralyt U
Molecular Weight 192.124 g/mole
Appearance Odorless white solid
Density 1.66 g/cm³ (Anhydrous)



The application of citric acid spans across various industries and products.

Food and Beverages: Citric acid is widely used as a preservative, flavor enhancer, and acidity regulator in food and beverage products. It helps extend shelf life, adds a tart, tangy flavor, and adjusts the pH.

Cosmetics: In cosmetics, citric acid is added to skincare products like cleansers, toners, and serums. It helps brighten the skin, minimize the appearance of fine lines and wrinkles, and even out skin tone.

Cleaning Products: Citric acid is utilized in cleaning products due to its disinfectant properties, ability to remove stains, and effectiveness in removing hard water deposits and buildup.

Pharmaceuticals: In the pharmaceutical industry, citric acid serves as a pH corrector and antioxidant. It helps preserve the stability and potency of vitamins, minerals, and other active ingredients in drug formulations.

Environmental impact and sustainability of Citric Acid

The corrosive properties of this substance can hinder plant germination. Increasing the amount of this substance in the soil raises its acidity, disrupting plant growth systems and potentially leading to premature plant death due to nutrient deficiencies. While citric acid has some positive effects on the environment and human life, its impact is limited.

Repeated application of this acid can induce an allelopathic effect in plants, inhibiting the growth of plants and biological processes. This characteristic has led to the use of citric acid in weed control. Additionally, small quantities of citric acid and ascorbic acid can aid in the rooting and survival of cherry branches.

Excessive use of citric acid in water can disrupt the Krebs cycle and lead to the accumulation of excess phosphate. The Krebs cycle is essential for plants to convert citric acids into phosphate, providing energy to cells.

Packing and Storage

Citric acid is offered in various physical forms for commercial use, including granular, fine granular, powder, liquid (as a 50% solution), and anhydrous (solid) forms. Companies such as Univar Solutions supply citric acid in these diverse granular, powder, and liquid variations to cater to the requirements of different industries and applications. Citric Acid and Citrates shall be kept in tightly closed containers in a cool, dry, well-ventilated and pollution-free place. Open-air storage is not allowed. Keep away from toxic, harmful, corrosive, polluting goods. Keep at temperature not exceeding 30℃ at a relative humidity not exceeding 50%. Citric acid can be packaged and delivered in sacks or big bags.